This documentation is for an older version (1.4.7) of Dagster. You can view the version of this page from our latest release below.
import io
import pickle
from typing import Any, Dict, Optional, Union
from dagster import (
ConfigurableIOManager,
InputContext,
MetadataValue,
OutputContext,
ResourceDependency,
_check as check,
io_manager,
)
from dagster._core.storage.io_manager import dagster_maintained_io_manager
from dagster._core.storage.upath_io_manager import UPathIOManager
from dagster._utils import PICKLE_PROTOCOL
from dagster._utils.cached_method import cached_method
from pydantic import Field
from upath import UPath
from .resources import S3Resource
class PickledObjectS3IOManager(UPathIOManager):
def __init__(
self,
s3_bucket: str,
s3_session: Any,
s3_prefix: Optional[str] = None,
):
self.bucket = check.str_param(s3_bucket, "s3_bucket")
check.opt_str_param(s3_prefix, "s3_prefix")
self.s3 = s3_session
self.s3.list_objects(Bucket=s3_bucket, Prefix=s3_prefix, MaxKeys=1)
base_path = UPath(s3_prefix) if s3_prefix else None
super().__init__(base_path=base_path)
def load_from_path(self, context: InputContext, path: UPath) -> Any:
return pickle.loads(self.s3.get_object(Bucket=self.bucket, Key=str(path))["Body"].read())
def dump_to_path(self, context: OutputContext, obj: Any, path: UPath) -> None:
if self.path_exists(path):
context.log.warning(f"Removing existing S3 object: {path}")
self.unlink(path)
pickled_obj = pickle.dumps(obj, PICKLE_PROTOCOL)
pickled_obj_bytes = io.BytesIO(pickled_obj)
self.s3.upload_fileobj(pickled_obj_bytes, self.bucket, str(path))
def path_exists(self, path: UPath) -> bool:
try:
self.s3.get_object(Bucket=self.bucket, Key=str(path))
except self.s3.exceptions.NoSuchKey:
return False
return True
def get_loading_input_log_message(self, path: UPath) -> str:
return f"Loading S3 object from: {self._uri_for_path(path)}"
def get_writing_output_log_message(self, path: UPath) -> str:
return f"Writing S3 object at: {self._uri_for_path(path)}"
def unlink(self, path: UPath) -> None:
self.s3.delete_object(Bucket=self.bucket, Key=str(path))
def make_directory(self, path: UPath) -> None:
# It is not necessary to create directories in S3
return None
def get_metadata(self, context: OutputContext, obj: Any) -> Dict[str, MetadataValue]:
path = self._get_path(context)
return {"uri": MetadataValue.path(self._uri_for_path(path))}
def get_op_output_relative_path(self, context: Union[InputContext, OutputContext]) -> UPath:
return UPath("storage", super().get_op_output_relative_path(context))
def _uri_for_path(self, path: UPath) -> str:
return f"s3://{self.bucket}/{path}"
class ConfigurablePickledObjectS3IOManager(ConfigurableIOManager):
"""Persistent IO manager using S3 for storage.
Serializes objects via pickling. Suitable for objects storage for distributed executors, so long
as each execution node has network connectivity and credentials for S3 and the backing bucket.
Assigns each op output to a unique filepath containing run ID, step key, and output name.
Assigns each asset to a single filesystem path, at "<base_dir>/<asset_key>". If the asset key
has multiple components, the final component is used as the name of the file, and the preceding
components as parent directories under the base_dir.
Subsequent materializations of an asset will overwrite previous materializations of that asset.
With a base directory of "/my/base/path", an asset with key
`AssetKey(["one", "two", "three"])` would be stored in a file called "three" in a directory
with path "/my/base/path/one/two/".
Example usage:
.. code-block:: python
from dagster import asset, Definitions
from dagster_aws.s3 import ConfigurablePickledObjectS3IOManager, S3Resource
@asset
def asset1():
# create df ...
return df
@asset
def asset2(asset1):
return asset1[:5]
defs = Definitions(
assets=[asset1, asset2],
resources={
"io_manager": ConfigurablePickledObjectS3IOManager(
s3_resource=S3Resource(),
s3_bucket="my-cool-bucket",
s3_prefix="my-cool-prefix",
)
}
)
"""
s3_resource: ResourceDependency[S3Resource]
s3_bucket: str = Field(description="S3 bucket to use for the file manager.")
s3_prefix: str = Field(
default="dagster", description="Prefix to use for the S3 bucket for this file manager."
)
@classmethod
def _is_dagster_maintained(cls) -> bool:
return True
@cached_method
def inner_io_manager(self) -> PickledObjectS3IOManager:
return PickledObjectS3IOManager(
s3_bucket=self.s3_bucket,
s3_session=self.s3_resource.get_client(),
s3_prefix=self.s3_prefix,
)
def load_input(self, context: InputContext) -> Any:
return self.inner_io_manager().load_input(context)
def handle_output(self, context: OutputContext, obj: Any) -> None:
return self.inner_io_manager().handle_output(context, obj)
[docs]@dagster_maintained_io_manager
@io_manager(
config_schema=ConfigurablePickledObjectS3IOManager.to_config_schema(),
required_resource_keys={"s3"},
)
def s3_pickle_io_manager(init_context):
"""Persistent IO manager using S3 for storage.
Serializes objects via pickling. Suitable for objects storage for distributed executors, so long
as each execution node has network connectivity and credentials for S3 and the backing bucket.
Assigns each op output to a unique filepath containing run ID, step key, and output name.
Assigns each asset to a single filesystem path, at "<base_dir>/<asset_key>". If the asset key
has multiple components, the final component is used as the name of the file, and the preceding
components as parent directories under the base_dir.
Subsequent materializations of an asset will overwrite previous materializations of that asset.
With a base directory of "/my/base/path", an asset with key
`AssetKey(["one", "two", "three"])` would be stored in a file called "three" in a directory
with path "/my/base/path/one/two/".
Example usage:
1. Attach this IO manager to a set of assets.
.. code-block:: python
from dagster import Definitions, asset
from dagster_aws.s3 import s3_pickle_io_manager, s3_resource
@asset
def asset1():
# create df ...
return df
@asset
def asset2(asset1):
return asset1[:5]
defs = Definitions(
assets=[asset1, asset2],
resources={
"io_manager": s3_pickle_io_manager.configured(
{"s3_bucket": "my-cool-bucket", "s3_prefix": "my-cool-prefix"}
),
"s3": s3_resource,
},
)
2. Attach this IO manager to your job to make it available to your ops.
.. code-block:: python
from dagster import job
from dagster_aws.s3 import s3_pickle_io_manager, s3_resource
@job(
resource_defs={
"io_manager": s3_pickle_io_manager.configured(
{"s3_bucket": "my-cool-bucket", "s3_prefix": "my-cool-prefix"}
),
"s3": s3_resource,
},
)
def my_job():
...
"""
s3_session = init_context.resources.s3
s3_bucket = init_context.resource_config["s3_bucket"]
s3_prefix = init_context.resource_config.get("s3_prefix") # s3_prefix is optional
pickled_io_manager = PickledObjectS3IOManager(s3_bucket, s3_session, s3_prefix=s3_prefix)
return pickled_io_manager