You are viewing an outdated version of the documentation.

This documentation is for an older version (1.4.7) of Dagster. You can view the version of this page from our latest release below.

Source code for dagster_fivetran.asset_defs

import hashlib
import inspect
import re
from functools import partial
from typing import (
    Any,
    Callable,
    Dict,
    List,
    Mapping,
    NamedTuple,
    Optional,
    Sequence,
    Set,
    Union,
    cast,
)

from dagster import (
    AssetKey,
    AssetOut,
    AssetsDefinition,
    Nothing,
    OpExecutionContext,
    Output,
    _check as check,
    multi_asset,
)
from dagster._core.definitions.cacheable_assets import (
    AssetsDefinitionCacheableData,
    CacheableAssetsDefinition,
)
from dagster._core.definitions.events import CoercibleToAssetKeyPrefix
from dagster._core.definitions.metadata import MetadataUserInput
from dagster._core.definitions.resource_definition import ResourceDefinition
from dagster._core.errors import DagsterStepOutputNotFoundError
from dagster._core.execution.context.init import build_init_resource_context

from dagster_fivetran.resources import DEFAULT_POLL_INTERVAL, FivetranResource
from dagster_fivetran.utils import (
    generate_materializations,
    get_fivetran_connector_url,
    metadata_for_table,
)


def _build_fivetran_assets(
    connector_id: str,
    destination_tables: Sequence[str],
    poll_interval: float = DEFAULT_POLL_INTERVAL,
    poll_timeout: Optional[float] = None,
    io_manager_key: Optional[str] = None,
    asset_key_prefix: Optional[Sequence[str]] = None,
    metadata_by_table_name: Optional[Mapping[str, MetadataUserInput]] = None,
    table_to_asset_key_map: Optional[Mapping[str, AssetKey]] = None,
    resource_defs: Optional[Mapping[str, ResourceDefinition]] = None,
    group_name: Optional[str] = None,
    infer_missing_tables: bool = False,
    op_tags: Optional[Mapping[str, Any]] = None,
) -> Sequence[AssetsDefinition]:
    asset_key_prefix = check.opt_sequence_param(asset_key_prefix, "asset_key_prefix", of_type=str)

    tracked_asset_keys = {
        table: AssetKey([*asset_key_prefix, *table.split(".")]) for table in destination_tables
    }
    user_facing_asset_keys = table_to_asset_key_map or tracked_asset_keys

    _metadata_by_table_name = check.opt_mapping_param(
        metadata_by_table_name, "metadata_by_table_name", key_type=str
    )

    @multi_asset(
        name=f"fivetran_sync_{connector_id}",
        outs={
            "_".join(key.path): AssetOut(
                io_manager_key=io_manager_key,
                key=user_facing_asset_keys[table],
                metadata=_metadata_by_table_name.get(table),
                dagster_type=Nothing,
            )
            for table, key in tracked_asset_keys.items()
        },
        compute_kind="fivetran",
        resource_defs=resource_defs,
        group_name=group_name,
        op_tags=op_tags,
    )
    def _assets(context: OpExecutionContext, fivetran: FivetranResource) -> Any:
        fivetran_output = fivetran.sync_and_poll(
            connector_id=connector_id,
            poll_interval=poll_interval,
            poll_timeout=poll_timeout,
        )

        materialized_asset_keys = set()
        for materialization in generate_materializations(
            fivetran_output, asset_key_prefix=asset_key_prefix
        ):
            # scan through all tables actually created, if it was expected then emit an Output.
            # otherwise, emit a runtime AssetMaterialization
            if materialization.asset_key in tracked_asset_keys.values():
                yield Output(
                    value=None,
                    output_name="_".join(materialization.asset_key.path),
                    metadata=materialization.metadata,
                )
                materialized_asset_keys.add(materialization.asset_key)

            else:
                yield materialization

        unmaterialized_asset_keys = set(tracked_asset_keys.values()) - materialized_asset_keys
        if infer_missing_tables:
            for asset_key in unmaterialized_asset_keys:
                yield Output(
                    value=None,
                    output_name="_".join(asset_key.path),
                )

        else:
            if unmaterialized_asset_keys:
                asset_key = list(unmaterialized_asset_keys)[0]
                output_name = "_".join(asset_key.path)
                raise DagsterStepOutputNotFoundError(
                    f"Core compute for {context.op_def.name} did not return an output for"
                    f' non-optional output "{output_name}".',
                    step_key=context.get_step_execution_context().step.key,
                    output_name=output_name,
                )

    return [_assets]


[docs]def build_fivetran_assets( connector_id: str, destination_tables: Sequence[str], poll_interval: float = DEFAULT_POLL_INTERVAL, poll_timeout: Optional[float] = None, io_manager_key: Optional[str] = None, asset_key_prefix: Optional[Sequence[str]] = None, metadata_by_table_name: Optional[Mapping[str, MetadataUserInput]] = None, group_name: Optional[str] = None, infer_missing_tables: bool = False, op_tags: Optional[Mapping[str, Any]] = None, ) -> Sequence[AssetsDefinition]: """Build a set of assets for a given Fivetran connector. Returns an AssetsDefinition which connects the specified ``asset_keys`` to the computation that will update them. Internally, executes a Fivetran sync for a given ``connector_id``, and polls until that sync completes, raising an error if it is unsuccessful. Requires the use of the :py:class:`~dagster_fivetran.fivetran_resource`, which allows it to communicate with the Fivetran API. Args: connector_id (str): The Fivetran Connector ID that this op will sync. You can retrieve this value from the "Setup" tab of a given connector in the Fivetran UI. destination_tables (List[str]): `schema_name.table_name` for each table that you want to be represented in the Dagster asset graph for this connection. poll_interval (float): The time (in seconds) that will be waited between successive polls. poll_timeout (Optional[float]): The maximum time that will waited before this operation is timed out. By default, this will never time out. io_manager_key (Optional[str]): The io_manager to be used to handle each of these assets. asset_key_prefix (Optional[List[str]]): A prefix for the asset keys inside this asset. If left blank, assets will have a key of `AssetKey([schema_name, table_name])`. metadata_by_table_name (Optional[Mapping[str, MetadataUserInput]]): A mapping from destination table name to user-supplied metadata that should be associated with the asset for that table. group_name (Optional[str]): A string name used to organize multiple assets into groups. This group name will be applied to all assets produced by this multi_asset. infer_missing_tables (bool): If True, will create asset materializations for tables specified in destination_tables even if they are not present in the Fivetran sync output. This is useful in cases where Fivetran does not sync any data for a table and therefore does not include it in the sync output API response. op_tags (Optional[Dict[str, Any]]): A dictionary of tags for the op that computes the asset. Frameworks may expect and require certain metadata to be attached to a op. Values that are not strings will be json encoded and must meet the criteria that json.loads(json.dumps(value)) == value. **Examples:** Basic example: .. code-block:: python from dagster import AssetKey, repository, with_resources from dagster_fivetran import fivetran_resource from dagster_fivetran.assets import build_fivetran_assets my_fivetran_resource = fivetran_resource.configured( { "api_key": {"env": "FIVETRAN_API_KEY"}, "api_secret": {"env": "FIVETRAN_API_SECRET"}, } ) Attaching metadata: .. code-block:: python fivetran_assets = build_fivetran_assets( connector_id="foobar", table_names=["schema1.table1", "schema2.table2"], metadata_by_table_name={ "schema1.table1": { "description": "This is a table that contains foo and bar", }, "schema2.table2": { "description": "This is a table that contains baz and quux", }, }, ) """ return _build_fivetran_assets( connector_id=connector_id, destination_tables=destination_tables, poll_interval=poll_interval, poll_timeout=poll_timeout, io_manager_key=io_manager_key, asset_key_prefix=asset_key_prefix, metadata_by_table_name=metadata_by_table_name, group_name=group_name, infer_missing_tables=infer_missing_tables, op_tags=op_tags, )
class FivetranConnectionMetadata( NamedTuple( "_FivetranConnectionMetadata", [ ("name", str), ("connector_id", str), ("connector_url", str), ("schemas", Mapping[str, Any]), ], ) ): def build_asset_defn_metadata( self, key_prefix: Sequence[str], group_name: Optional[str], table_to_asset_key_fn: Callable[[str], AssetKey], io_manager_key: Optional[str] = None, ) -> AssetsDefinitionCacheableData: schema_table_meta: Dict[str, MetadataUserInput] = {} if "schemas" in self.schemas: schemas_inner = cast(Dict[str, Any], self.schemas["schemas"]) for schema in schemas_inner.values(): if schema["enabled"]: schema_name = schema["name_in_destination"] schema_tables = cast(Dict[str, Dict[str, Any]], schema["tables"]) for table in schema_tables.values(): if table["enabled"]: table_name = table["name_in_destination"] schema_table_meta[f"{schema_name}.{table_name}"] = metadata_for_table( table, self.connector_url ) else: schema_table_meta[self.name] = {} outputs = { table: AssetKey([*key_prefix, *list(table_to_asset_key_fn(table).path)]) for table in schema_table_meta.keys() } internal_deps: Dict[str, Set[AssetKey]] = {} return AssetsDefinitionCacheableData( keys_by_input_name={}, keys_by_output_name=outputs, internal_asset_deps=internal_deps, group_name=group_name, key_prefix=key_prefix, can_subset=False, metadata_by_output_name=schema_table_meta, extra_metadata={ "connector_id": self.connector_id, "io_manager_key": io_manager_key, }, ) def _build_fivetran_assets_from_metadata( assets_defn_meta: AssetsDefinitionCacheableData, resource_defs: Mapping[str, ResourceDefinition], poll_interval: float, poll_timeout: Optional[float] = None, ) -> AssetsDefinition: metadata = cast(Mapping[str, Any], assets_defn_meta.extra_metadata) connector_id = cast(str, metadata["connector_id"]) io_manager_key = cast(Optional[str], metadata["io_manager_key"]) return _build_fivetran_assets( connector_id=connector_id, destination_tables=list( assets_defn_meta.keys_by_output_name.keys() if assets_defn_meta.keys_by_output_name else [] ), asset_key_prefix=list(assets_defn_meta.key_prefix or []), metadata_by_table_name=cast( Dict[str, MetadataUserInput], assets_defn_meta.metadata_by_output_name ), io_manager_key=io_manager_key, table_to_asset_key_map=assets_defn_meta.keys_by_output_name, resource_defs=resource_defs, group_name=assets_defn_meta.group_name, poll_interval=poll_interval, poll_timeout=poll_timeout, )[0] class FivetranInstanceCacheableAssetsDefinition(CacheableAssetsDefinition): def __init__( self, fivetran_resource_def: Union[FivetranResource, ResourceDefinition], key_prefix: Sequence[str], connector_to_group_fn: Optional[Callable[[str], Optional[str]]], connector_filter: Optional[Callable[[FivetranConnectionMetadata], bool]], connector_to_io_manager_key_fn: Optional[Callable[[str], Optional[str]]], connector_to_asset_key_fn: Optional[Callable[[FivetranConnectionMetadata, str], AssetKey]], poll_interval: float, poll_timeout: Optional[float], ): self._fivetran_resource_def = fivetran_resource_def self._fivetran_instance: FivetranResource = ( fivetran_resource_def.process_config_and_initialize() if isinstance(fivetran_resource_def, FivetranResource) else fivetran_resource_def(build_init_resource_context()) ) self._key_prefix = key_prefix self._connector_to_group_fn = connector_to_group_fn self._connection_filter = connector_filter self._connector_to_io_manager_key_fn = connector_to_io_manager_key_fn self._connector_to_asset_key_fn: Callable[[FivetranConnectionMetadata, str], AssetKey] = ( connector_to_asset_key_fn or (lambda _, table: AssetKey(path=table.split("."))) ) self._poll_interval = poll_interval self._poll_timeout = poll_timeout contents = hashlib.sha1() contents.update(",".join(key_prefix).encode("utf-8")) if connector_filter: contents.update(inspect.getsource(connector_filter).encode("utf-8")) super().__init__(unique_id=f"fivetran-{contents.hexdigest()}") def _get_connectors(self) -> Sequence[FivetranConnectionMetadata]: output_connectors: List[FivetranConnectionMetadata] = [] groups = self._fivetran_instance.make_request("GET", "groups")["items"] for group in groups: group_id = group["id"] connectors = self._fivetran_instance.make_request( "GET", f"groups/{group_id}/connectors" )["items"] for connector in connectors: connector_id = connector["id"] connector_name = connector["schema"] setup_state = connector.get("status", {}).get("setup_state") if setup_state and setup_state in ("incomplete", "broken"): continue connector_url = get_fivetran_connector_url(connector) schemas = self._fivetran_instance.make_request( "GET", f"connectors/{connector_id}/schemas" ) output_connectors.append( FivetranConnectionMetadata( name=connector_name, connector_id=connector_id, connector_url=connector_url, schemas=schemas, ) ) return output_connectors def compute_cacheable_data(self) -> Sequence[AssetsDefinitionCacheableData]: asset_defn_data: List[AssetsDefinitionCacheableData] = [] for connector in self._get_connectors(): if not self._connection_filter or self._connection_filter(connector): table_to_asset_key = partial(self._connector_to_asset_key_fn, connector) asset_defn_data.append( connector.build_asset_defn_metadata( key_prefix=self._key_prefix, group_name=( self._connector_to_group_fn(connector.name) if self._connector_to_group_fn else None ), io_manager_key=( self._connector_to_io_manager_key_fn(connector.name) if self._connector_to_io_manager_key_fn else None ), table_to_asset_key_fn=table_to_asset_key, ) ) return asset_defn_data def build_definitions( self, data: Sequence[AssetsDefinitionCacheableData] ) -> Sequence[AssetsDefinition]: return [ _build_fivetran_assets_from_metadata( meta, {"fivetran": self._fivetran_instance.get_resource_definition()}, poll_interval=self._poll_interval, poll_timeout=self._poll_timeout, ) for meta in data ] def _clean_name(name: str) -> str: """Cleans an input to be a valid Dagster asset name.""" return re.sub(r"[^a-z0-9]+", "_", name.lower())
[docs]def load_assets_from_fivetran_instance( fivetran: Union[FivetranResource, ResourceDefinition], key_prefix: Optional[CoercibleToAssetKeyPrefix] = None, connector_to_group_fn: Optional[Callable[[str], Optional[str]]] = _clean_name, io_manager_key: Optional[str] = None, connector_to_io_manager_key_fn: Optional[Callable[[str], Optional[str]]] = None, connector_filter: Optional[Callable[[FivetranConnectionMetadata], bool]] = None, connector_to_asset_key_fn: Optional[ Callable[[FivetranConnectionMetadata, str], AssetKey] ] = None, poll_interval: float = DEFAULT_POLL_INTERVAL, poll_timeout: Optional[float] = None, ) -> CacheableAssetsDefinition: """Loads Fivetran connector assets from a configured FivetranResource instance. This fetches information about defined connectors at initialization time, and will error on workspace load if the Fivetran instance is not reachable. Args: fivetran (ResourceDefinition): A FivetranResource configured with the appropriate connection details. key_prefix (Optional[CoercibleToAssetKeyPrefix]): A prefix for the asset keys created. connector_to_group_fn (Optional[Callable[[str], Optional[str]]]): Function which returns an asset group name for a given Fivetran connector name. If None, no groups will be created. Defaults to a basic sanitization function. io_manager_key (Optional[str]): The IO manager key to use for all assets. Defaults to "io_manager". Use this if all assets should be loaded from the same source, otherwise use connector_to_io_manager_key_fn. connector_to_io_manager_key_fn (Optional[Callable[[str], Optional[str]]]): Function which returns an IO manager key for a given Fivetran connector name. When other ops are downstream of the loaded assets, the IOManager specified determines how the inputs to those ops are loaded. Defaults to "io_manager". connector_filter (Optional[Callable[[FivetranConnectorMetadata], bool]]): Optional function which takes in connector metadata and returns False if the connector should be excluded from the output assets. poll_interval (float): The time (in seconds) that will be waited between successive polls. poll_timeout (Optional[float]): The maximum time that will waited before this operation is timed out. By default, this will never time out. **Examples:** Loading all Fivetran connectors as assets: .. code-block:: python from dagster_fivetran import fivetran_resource, load_assets_from_fivetran_instance fivetran_instance = fivetran_resource.configured( { "api_key": "some_key", "api_secret": "some_secret", } ) fivetran_assets = load_assets_from_fivetran_instance(fivetran_instance) Filtering the set of loaded connectors: .. code-block:: python from dagster_fivetran import fivetran_resource, load_assets_from_fivetran_instance fivetran_instance = fivetran_resource.configured( { "api_key": "some_key", "api_secret": "some_secret", } ) fivetran_assets = load_assets_from_fivetran_instance( fivetran_instance, connector_filter=lambda meta: "snowflake" in meta.name, ) """ if isinstance(key_prefix, str): key_prefix = [key_prefix] key_prefix = check.list_param(key_prefix or [], "key_prefix", of_type=str) check.invariant( not io_manager_key or not connector_to_io_manager_key_fn, "Cannot specify both io_manager_key and connector_to_io_manager_key_fn", ) if not connector_to_io_manager_key_fn: connector_to_io_manager_key_fn = lambda _: io_manager_key return FivetranInstanceCacheableAssetsDefinition( fivetran_resource_def=fivetran, key_prefix=key_prefix, connector_to_group_fn=connector_to_group_fn, connector_to_io_manager_key_fn=connector_to_io_manager_key_fn, connector_filter=connector_filter, connector_to_asset_key_fn=connector_to_asset_key_fn, poll_interval=poll_interval, poll_timeout=poll_timeout, )