You are viewing an outdated version of the documentation.

This documentation is for an older version (1.4.7) of Dagster. You can view the version of this page from our latest release below.

Source code for dagster_k8s.executor

from typing import Iterator, List, Optional, cast

import kubernetes.config
from dagster import (
    Field,
    IntSource,
    Noneable,
    StringSource,
    _check as check,
    executor,
)
from dagster._core.definitions.executor_definition import multiple_process_executor_requirements
from dagster._core.definitions.metadata import MetadataValue
from dagster._core.events import DagsterEvent, EngineEventData
from dagster._core.execution.retries import RetryMode, get_retries_config
from dagster._core.execution.tags import get_tag_concurrency_limits_config
from dagster._core.executor.base import Executor
from dagster._core.executor.init import InitExecutorContext
from dagster._core.executor.step_delegating import (
    CheckStepHealthResult,
    StepDelegatingExecutor,
    StepHandler,
    StepHandlerContext,
)
from dagster._utils.merger import merge_dicts

from dagster_k8s.launcher import K8sRunLauncher

from .client import DagsterKubernetesClient
from .container_context import K8sContainerContext
from .job import (
    USER_DEFINED_K8S_CONFIG_SCHEMA,
    DagsterK8sJobConfig,
    construct_dagster_k8s_job,
    get_k8s_job_name,
    get_user_defined_k8s_config,
)

_K8S_EXECUTOR_CONFIG_SCHEMA = merge_dicts(
    DagsterK8sJobConfig.config_type_job(),
    {
        "load_incluster_config": Field(
            bool,
            is_required=False,
            description="""Whether or not the executor is running within a k8s cluster already. If
            the job is using the `K8sRunLauncher`, the default value of this parameter will be
            the same as the corresponding value on the run launcher.
            If ``True``, we assume the executor is running within the target cluster and load config
            using ``kubernetes.config.load_incluster_config``. Otherwise, we will use the k8s config
            specified in ``kubeconfig_file`` (using ``kubernetes.config.load_kube_config``) or fall
            back to the default kubeconfig.""",
        ),
        "kubeconfig_file": Field(
            Noneable(str),
            is_required=False,
            description="""Path to a kubeconfig file to use, if not using default kubeconfig. If
            the job is using the `K8sRunLauncher`, the default value of this parameter will be
            the same as the corresponding value on the run launcher.""",
        ),
        "job_namespace": Field(StringSource, is_required=False),
        "retries": get_retries_config(),
        "max_concurrent": Field(
            IntSource,
            is_required=False,
            description=(
                "Limit on the number of pods that will run concurrently within the scope "
                "of a Dagster run. Note that this limit is per run, not global."
            ),
        ),
        "tag_concurrency_limits": get_tag_concurrency_limits_config(),
        "step_k8s_config": Field(
            USER_DEFINED_K8S_CONFIG_SCHEMA,
            is_required=False,
            description="Raw Kubernetes configuration for each step launched by the executor.",
        ),
    },
)


[docs]@executor( name="k8s", config_schema=_K8S_EXECUTOR_CONFIG_SCHEMA, requirements=multiple_process_executor_requirements(), ) def k8s_job_executor(init_context: InitExecutorContext) -> Executor: """Executor which launches steps as Kubernetes Jobs. To use the `k8s_job_executor`, set it as the `executor_def` when defining a job: .. literalinclude:: ../../../../../../python_modules/libraries/dagster-k8s/dagster_k8s_tests/unit_tests/test_example_executor_mode_def.py :start-after: start_marker :end-before: end_marker :language: python Then you can configure the executor with run config as follows: .. code-block:: YAML execution: config: job_namespace: 'some-namespace' image_pull_policy: ... image_pull_secrets: ... service_account_name: ... env_config_maps: ... env_secrets: ... env_vars: ... job_image: ... # leave out if using userDeployments max_concurrent: ... `max_concurrent` limits the number of pods that will execute concurrently for one run. By default there is no limit- it will maximally parallel as allowed by the DAG. Note that this is not a global limit. Configuration set on the Kubernetes Jobs and Pods created by the `K8sRunLauncher` will also be set on Kubernetes Jobs and Pods created by the `k8s_job_executor`. Configuration set using `tags` on a `@job` will only apply to the `run` level. For configuration to apply at each `step` it must be set using `tags` for each `@op`. """ run_launcher = ( init_context.instance.run_launcher if isinstance(init_context.instance.run_launcher, K8sRunLauncher) else None ) exc_cfg = init_context.executor_config k8s_container_context = K8sContainerContext( image_pull_policy=exc_cfg.get("image_pull_policy"), # type: ignore image_pull_secrets=exc_cfg.get("image_pull_secrets"), # type: ignore service_account_name=exc_cfg.get("service_account_name"), # type: ignore env_config_maps=exc_cfg.get("env_config_maps"), # type: ignore env_secrets=exc_cfg.get("env_secrets"), # type: ignore env_vars=exc_cfg.get("env_vars"), # type: ignore volume_mounts=exc_cfg.get("volume_mounts"), # type: ignore volumes=exc_cfg.get("volumes"), # type: ignore labels=exc_cfg.get("labels"), # type: ignore namespace=exc_cfg.get("job_namespace"), # type: ignore resources=exc_cfg.get("resources"), # type: ignore scheduler_name=exc_cfg.get("scheduler_name"), # type: ignore # step_k8s_config feeds into the run_k8s_config field because it is merged # with any configuration for the run that was set on the run launcher or code location run_k8s_config=exc_cfg.get("step_k8s_config"), # type: ignore ) if "load_incluster_config" in exc_cfg: load_incluster_config = cast(bool, exc_cfg["load_incluster_config"]) else: load_incluster_config = run_launcher.load_incluster_config if run_launcher else True if "kubeconfig_file" in exc_cfg: kubeconfig_file = cast(Optional[str], exc_cfg["kubeconfig_file"]) else: kubeconfig_file = run_launcher.kubeconfig_file if run_launcher else None return StepDelegatingExecutor( K8sStepHandler( image=exc_cfg.get("job_image"), # type: ignore container_context=k8s_container_context, load_incluster_config=load_incluster_config, kubeconfig_file=kubeconfig_file, ), retries=RetryMode.from_config(exc_cfg["retries"]), # type: ignore max_concurrent=check.opt_int_elem(exc_cfg, "max_concurrent"), tag_concurrency_limits=check.opt_list_elem(exc_cfg, "tag_concurrency_limits"), should_verify_step=True, )
class K8sStepHandler(StepHandler): @property def name(self): return "K8sStepHandler" def __init__( self, image: Optional[str], container_context: K8sContainerContext, load_incluster_config: bool, kubeconfig_file: Optional[str], k8s_client_batch_api=None, ): super().__init__() self._executor_image = check.opt_str_param(image, "image") self._executor_container_context = check.inst_param( container_context, "container_context", K8sContainerContext ) if load_incluster_config: check.invariant( kubeconfig_file is None, "`kubeconfig_file` is set but `load_incluster_config` is True.", ) kubernetes.config.load_incluster_config() else: check.opt_str_param(kubeconfig_file, "kubeconfig_file") kubernetes.config.load_kube_config(kubeconfig_file) self._api_client = DagsterKubernetesClient.production_client( batch_api_override=k8s_client_batch_api ) def _get_step_key(self, step_handler_context: StepHandlerContext) -> str: step_keys_to_execute = cast( List[str], step_handler_context.execute_step_args.step_keys_to_execute ) assert len(step_keys_to_execute) == 1, "Launching multiple steps is not currently supported" return step_keys_to_execute[0] def _get_container_context( self, step_handler_context: StepHandlerContext ) -> K8sContainerContext: step_key = self._get_step_key(step_handler_context) context = K8sContainerContext.create_for_run( step_handler_context.dagster_run, cast(K8sRunLauncher, step_handler_context.instance.run_launcher), include_run_tags=False, # For now don't include job-level dagster-k8s/config tags in step pods ) context = context.merge(self._executor_container_context) user_defined_k8s_config = get_user_defined_k8s_config( step_handler_context.step_tags[step_key] ) return context.merge(K8sContainerContext(run_k8s_config=user_defined_k8s_config.to_dict())) def _get_k8s_step_job_name(self, step_handler_context: StepHandlerContext): step_key = self._get_step_key(step_handler_context) name_key = get_k8s_job_name( step_handler_context.execute_step_args.run_id, step_key, ) if step_handler_context.execute_step_args.known_state: retry_state = step_handler_context.execute_step_args.known_state.get_retry_state() if retry_state.get_attempt_count(step_key): return "dagster-step-%s-%d" % (name_key, retry_state.get_attempt_count(step_key)) return "dagster-step-%s" % (name_key) def launch_step(self, step_handler_context: StepHandlerContext) -> Iterator[DagsterEvent]: step_key = self._get_step_key(step_handler_context) job_name = self._get_k8s_step_job_name(step_handler_context) pod_name = job_name container_context = self._get_container_context(step_handler_context) job_config = container_context.get_k8s_job_config( self._executor_image, step_handler_context.instance.run_launcher ) args = step_handler_context.execute_step_args.get_command_args( skip_serialized_namedtuple=True ) if not job_config.job_image: job_config = job_config.with_image( step_handler_context.execute_step_args.job_origin.repository_origin.container_image ) if not job_config.job_image: raise Exception("No image included in either executor config or the job") run = step_handler_context.dagster_run labels = { "dagster/job": run.job_name, "dagster/op": step_key, "dagster/run-id": step_handler_context.execute_step_args.run_id, } if run.external_job_origin: labels["dagster/code-location"] = ( run.external_job_origin.external_repository_origin.code_location_origin.location_name ) job = construct_dagster_k8s_job( job_config=job_config, args=args, job_name=job_name, pod_name=pod_name, component="step_worker", user_defined_k8s_config=container_context.get_run_user_defined_k8s_config(), labels=labels, env_vars=[ *step_handler_context.execute_step_args.get_command_env(), { "name": "DAGSTER_RUN_JOB_NAME", "value": run.job_name, }, {"name": "DAGSTER_RUN_STEP_KEY", "value": step_key}, *container_context.env, ], ) yield DagsterEvent.step_worker_starting( step_handler_context.get_step_context(step_key), message=f'Executing step "{step_key}" in Kubernetes job {job_name}.', metadata={ "Kubernetes Job name": MetadataValue.text(job_name), }, ) namespace = check.not_none(container_context.namespace) self._api_client.create_namespaced_job_with_retries(body=job, namespace=namespace) def check_step_health(self, step_handler_context: StepHandlerContext) -> CheckStepHealthResult: step_key = self._get_step_key(step_handler_context) job_name = self._get_k8s_step_job_name(step_handler_context) container_context = self._get_container_context(step_handler_context) status = self._api_client.get_job_status( namespace=container_context.namespace, job_name=job_name, ) if status.failed: return CheckStepHealthResult.unhealthy( reason=f"Discovered failed Kubernetes job {job_name} for step {step_key}.", ) return CheckStepHealthResult.healthy() def terminate_step(self, step_handler_context: StepHandlerContext) -> Iterator[DagsterEvent]: step_key = self._get_step_key(step_handler_context) job_name = self._get_k8s_step_job_name(step_handler_context) container_context = self._get_container_context(step_handler_context) yield DagsterEvent.engine_event( step_handler_context.get_step_context(step_key), message=f"Deleting Kubernetes job {job_name} for step", event_specific_data=EngineEventData(), ) self._api_client.delete_job(job_name=job_name, namespace=container_context.namespace)